Moments, Skewness, and Kurtosis

- Moments for Grouped Data
- Relations Between Moments
- Computation of Moments for Grouped Data,
- Charlie's Check and Sheppard's Corrections
- Moments in Dimensionless Form
- Skewness, Kurtosis

<u>Moments</u>: For any frequency distribution, the \mathbf{r}^{th} moment about any point \mathbf{A} is defined as the Arithmetic mean of \mathbf{r}^{th} powers of deviations from the point A.

Moments about mean (or Central Moments) :

Let $x_1, x_2, ..., x_n$ be the n values of the variable x, then the \mathbf{r}^{th} moment about the mean

(arithmetic mean) \overline{x} is denoted by μ_{r} and is defined by

$$\mu_r = \frac{\sum_{i=1}^n (x_i - \overline{x})^r}{n}$$
, *for* $r = 0, 1, 2, 3 \dots$

For a frequency distribution. Let

- \mathbf{x} : \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_n
- $f: \quad f_1 \qquad f_2 \qquad \dots \qquad f_n$

be a discrete frequency distribution. Then the rth moment μr about the mean x is defined by

$$\mu_{\mathbf{r}} = \frac{\sum_{i=1}^{n} f_i(x_i - \overline{x})}{f_i} \text{ for r-0, 1, 2, 3,}$$

For all distribution $\mu_1 = 0$

For r=2,
$$\mu_2 = \frac{1}{N} \sum f_i(x_i - \overline{x}) 2 = \sigma^2 = \text{variance.}$$

Hence for all distribution $\mu_2 = (standard deviation)^2 = Variance$

MOMENTS ABOUT ANY POINT (RAW MOMENTS)

For any frequency distribution the rth moment about any point x = A, is defined as the arithmetic mean of the \mathbf{r}^{th} powers of the deviations from the point x=A and is denoted

by $\mu^{2}r$

If

Х:	x1	x2	 xn
F:	f1	f2	 fn

Be discrete frequency distribution, then

$$\mu_{\mathbf{r}'} = \frac{1}{N} \sum_{i=1}^{n} f_i(x_i - A)^{\mathbf{r}}, \mathbf{r} = 0, 1, 2, 3, ..., \text{ and } \sum_{i=1}^{n} f_i = N.$$

KARL PEARSON'S β AND γ COEFFICIENTS

Karl Pearson gave the following four coefficients. Calculated from the central moments, which are defined as

Beta coeficients	Gamma coefficients
$\beta_1 = {\mu_3}^2 / {\mu_2}^3$	$\gamma 1 = \pm \sqrt{\beta_1}$
$\beta_2 = \mu_4/{\mu_2}^2$	$\gamma 2 = \beta 2 - 3 = \frac{\mu_4 - 3\mu_2^2}{\mu_2^2}$

The sign of γ_1 depends upon μ_3 is positive then γ_1 is positive. If μ_3 is negative then γ_1 is negative. The above four coefficients are pure numbers and thus do not have any unit. The β and γ coefficients give some idea about the shape of the curve obtained from the frequency distribution. This we shall discuss in the topic Kurtosis and Skew ness. To Calculate Central Moments.

 $\mu_{1} = 0 \text{ (always)}$ $\mu_{2} = \mu_{2}' - (\mu_{1}')^{2}$ $\mu_{3} = \mu_{3}' - 3 \mu_{2}' \mu_{1}' + 2 (\mu_{1}')^{3}$ $\mu_{4} = \mu_{4}' - 4 \mu_{3}' \mu_{1}' + 6 \mu_{2}' (\mu_{1}')^{2} - 3 (\mu_{1}')^{4}$

SKEWNESS

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

- Skew is a measure of symmetry in the distribution of scores.
- If $s^3 < 0$, then the distribution has a negative skew.
- If $s^3 > 0$ then the distribution has a positive skew.
- If $s^3 = 0$ then the distribution is symmetrical.
- The more different s³ is from 0, the greater the skew in the distribution

KURTOSIS

Kurtosis is a parameter that describes the shape of a random variable's probability distribution. Kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution.

- Positive kurtosis indicates a relatively peaked distribution.
- Negative kurtosis indicates a relatively flat distribution.
- Kurtosis measures whether the scores are spread out more or less than they would be in a normal (Gaussian) distribution.
- When the distribution is normally distributed, its kurtosis equals to 3 and it is said to be **mesokurtic**
- When the distribution is less spread out than normal, its kurtosis is greater than 3 and it is said to be **leptokurtic**
- When the distribution is more spread out than normal, its kurtosis is less than 3 and it is said to be **platykurtic**

NOTE: Collectively, the variance (s²), skew (s³), and kurtosis (s⁴) describe the shape of the distribution.

Coefficient of skewness =
$$\frac{Q_3 + Q_1 - 2M_d}{Q_3 - Q_1} = \frac{(Q_3 - M_d) - (M_d - Q_1)}{(Q_3 - M_d) + (M_d - Q_1)}$$

Coefficient of skewness =
$$\frac{Mean - Mode}{S \tan dardDeviation} = \frac{M - M0}{\sigma}$$

Coeff. Of skewness =
$$\frac{3(M - M_d)}{\sigma}$$

Kurtosis or $\beta_2 = \mu_4 / \mu_2^2$.
 $\gamma_2 = \beta 2 - 3 = \frac{\mu_4 - 3\mu_2^2}{\mu_2^2}$

Deductions.

- (1) If $\gamma_2 = 0$, the curve is normal.
- (2) If $\gamma_2 > 0$, the curve is leprokurtic.
- (3) If $\gamma_2 < 0$, the curve is platykurtic.

Sheppard's correction are approximate corrections to estimate of moments computed from binned data. The concept is named after William Fleetwood Sheppard.

Let $\mathbf{m}_{\mathbf{k}}$ be the measured kth moments $\widehat{\boldsymbol{\mu}_{\mathbf{k}}}$ the corresponding corrected moment, and **c** the class interval, <u>no correction is necessary for the mean (first moments about zero)</u>.

The first few measured and corrected moments about the mean are then related as follows:

*c*⁴

$$\widehat{\mu_2} = m_2 - \frac{1}{12}c^2$$

$$\widehat{\mu_3} = m_3$$

$$\widehat{\mu_4} = m_2 - \frac{1}{2}m_2c^2 + \frac{7}{240}$$